
HTML & CSS Basics - First Summary
We learned a lot about HTML and CSS - two of the most important languages you
need to know as a web developer.

Here's a concise summary of all the core features we learned about thus far.
Features which you need to know because you will use them all the time!

HTML Summary

What & Why?

HTML (HyperText Markup Language) is the heart of every webpage. It defines the
structure of the webpage and annotates the content to tell the browser what to
display and provide extra meaning. Without HTML, text would always be "just text"
- there would be no semantic difference between titles, normal text, subtitles etc.
You also wouldn't be able to add images or links.

Even though browsers by default add styles for certain HTML elements (e.g. <h1>
elements are bold and bigger by default), you don't use HTML for styling
purposes!

Instead, HTML adds semantic meaning to your content - it provides annotations
that describe your content. And in the case of certain elements (e.g. , <a>) it
also tells the browser what to display (e.g. show an image) and what to do (e.g.
navigate to another page).

Your website is not just viewed by you but it's also parsed by search engine crawlers
or presented by assistive technologies like screen readers. That's why describing
your content correctly matters a lot!

HTML Element Anatomy

HTML elements are typically made up of an opening tag (e.g. <h1>), some content
(e.g. Hi there!) and a closing tag (e.g. </h1>).

HTML elements can also receive attributes that allow you to add extra behavior or
configuration to the element (it depends on the attribute).

For example, a link (<a>) requires a href attribute to tell the browser where it
should lead to:

There also are some void elements though - e.g. . Those elements don't need
a closing tag since they don't hold any content.

Nesting HTML Elements

One key characteristic of HTML is that you can nest elements into each other - just
as you can see it in this example:

Here, the element is a so-called child element of (which is the parent).
And it even has a child element itself: The link (<a>) element (which is a
descendant of the element therefore - on the other hand, is an ancestor
of <a>).

The second ("Another item") would be a sibling to the first - together,
they form the children of .

When writing HTML code, you typically build deeply nested structures because
most content can only be described accurately if you do combine HTML elements
like this. How else would you build a semantically correct list of links?

<p>This leads to Google.</p>

<!-- or -->

 This leads to Google
 Another item

HTML Structure & Skeleton

There are two big groups of HTML elements:

1. Elements for presenting and describing your page content (e.g. h1, p, ul, a,
img etc.)

2. Elements for describing your overall page and for linking to other required
resources (e.g. title, meta, link, style)

That's why a properly formatted HTML document should have a "skeleton" that
defines two main areas:

1. <body> for page content
2. <head> for metadata

Therefore, a correct HTML document skeleton (which you should use in every
.html file you create) should look like this:

<!-- --> marks a comment by the way - this comment will not show up on
the page when rendered by the browser.

Inline vs Block Elements

You also learned that are two main kinds of content (<body>) elements in HTML:

1. Block elements (e.g. h1, p, ul, ...)
2. Inline elements (e.g. a, span, img)

Block elements always reserve the entire width of the screen for themselves
(though that can be changed by CSS).

<!DOCTYPE html>
<html>
 <head>
 <title>My Page Title</title>
 <!-- Other metadata -->
 </head>
 <body>
 <h1>Hi there!</h1>
 <!-- Other page content -->
 </body>
</html>

Inline elements on the other hand are - as the name suggests - there to fit "into a
line with other elements". It would, for example, be strange if a link (<a>) would
force a line break because it reserves the entire screen width for itself.

On the other hand, a new paragraph (<p>) or title (<h1>, <h2> etc.) should probably
not be squeezed into the same line as some other text.

You can change that behavior via CSS though, in case you need to.

HTML Elements We Know Thus Far

Up to this point, we learned about a lot of important elements already - here's a
summary list:

<head> Elements

<meta>: Can be used to add extra metadata to your page - e.g. a
description that could be picked up by search engine crawlers
<title>: Allows you to define a page title (will be used by search engines
but also shows up in the browser tabs)
<style>: Can be used to define global CSS styles for the page
<link>: Allows you to link ("connect") your HTML file to some other
resource - typically to a .css file which's styles will then be applied as
global styles to that HTML document

<body>Elements:

<h1>, <h2>, <h3> etc: Headings (titles) which you can add to your page.
Should be used in order and only one <h1> element should be used per
HTML document. A <h2> element acts as a subtitle, a <h3> element is
then another subtitle on an even lower level.
<p>: Can be used to define a regular paragraph of inline content (typically
text)
: Can be used to add emphesis to a word or phrase
: Can be used to add strong emphesis to a word or phrase (as if
you would be saying it out aloud, strongly emphasing it verbally)
: Can be used to display an image. You need to set the image source
path via the src attribute. And you should set some alternative text via
the alt attribute - this text is displayed if the image can't be loaded or if
a user who uses an assistive technology visits your page
/: Can be used to render ordered or unordered lists of data. Use
this element if you got list data.
: Used inside of or to define the individual list items of
that list.
<header>: A block element that defines a header - for the entire page or a
subsection of the page (more on that later)

<footer>: A block element that defines a footer - for the entire page or a
subsection of the page (more on that later)
<main>: Defines the main content of a page - you should not have more
than one <main> element per HTML document.
<section>: Defines a new section in your document - typically contains
a heading (e.g. <h2>), though it's not a "must-have"
: A meaningless inline element which can be used to wrap content
that should be targeted with CSS styling (e.g. with help of a CSS class or
an id)
<div>: A meaningless block element which can be used to wrap content
that should be targeted with CSS styling (e.g. with help of a CSS class or
an id)

We'll of course see many more elements throughout this course - you can also
explore all available elements in the MDN HTML Elements Reference.

CSS Summary

What & Why?

CSS (Cascading Style Sheets) is a language that allows you to define style definitions
for your HTML document. These definitions will be picked up by the browser and
control how the content will be displayed (e.g. that some text is red, which font size
it should have etc.).

Where HTML defines the structure and meaning of your content (and of course also
helps with displaying the content in the first place - e.g. with the element),
CSS is used to then present the content exactly how you want to present it. It adds
no meaning or annotation - it's really just about how things look.

If oyu want to change text colors, background colors, sizes, spacings, distances,
borders, shadows, positions and all these things, you need CSS.

CSS Syntax

There's a broad variety of available CSS properties which you can define. All those
properties then take different values - the concrete values you can assign depend
on the property for which you're assigning it.

color: #ccc; /* hexadecimal represention of rgb color */
color: rgb(204, 204, 204); /* same colors as above */
font-size: 18px; /* setting a size in device-independent pixels */

https://developer.mozilla.org/en-US/docs/Web/HTML/Element

CSS styles can be defined in different ways, for example "inline" via the style
attribute:

But using such "inline styles" is typically not recommended as it comes with
various disadvantages. Most importantly, it clutters your HTML code (hard to
maintain!), requires lots of duplication and copy and pasting and it also is hard to
change: You often need to visit and adjust multiple elements if you want to adjust
one single style.

That's why you typically define global CSS styles via the <style> element or in an
external .css file which is then imported via a <link> element.

When using such global styles, the CSS syntax stays the same but you group your
property-value assignments into a so-called CSS rule which also a CSS selector that
defines for which HTML elements your styles should be applied:

You can also combine CSS selectors:

You can also provide specific styles for specific states of HTML elements - with
pseudo-selectors:

<h1 style="font-size: 20px">Hi there!</h1>

h1 { /* is applied to ALL <h1> elements */
 font-size: 20px;
}

#some-id { /* is applied to a single HTML element with id="some-id" */
 color: #ccc;
}

.my-link { /* is applied to ALL HTML elments with class="my-link" */
 text-decoration: none;
}

h1, p { /* applies the rule to all <h1> and <p> elements */
 color: rgb(204, 204, 204);
}

p a { /* targets all <a> elements that are descendants of a <p> */
 color: red;
}

What Can You Style?

You can really style (almost) anything with CSS. That's why you should use CSS for
styling and not use certain HTML elements because you want a certain look.

HTML is there to define the content, provide the structure and meaning, CSS is then
there to present your content however you want to present it.

CSS Values & Units

Since there are dozens of CSS properties you can target (we only saw a small subset
thus far), there are also hundreds of possible values you can assign.

The concrete values you can assign always depend on the property you're currently
defining: Color properties (e.g. color, background-color) want color values (e.g.
#fa923f, #ccc, rgb(204, 204, 204), hsl(180, 20, 75), red). Dimension
properties (e.g. font-size, margin) want dimension values (e.g. 18px). The font-
family property wants a list of font families it should use (e.g. font-family:
'Oswald', sans-serif).

Even though the number of available properties and values and units can be
intimidating right now, you'll develop a good feeling for the different properties
and values over time. In the end, you will always have a couple of properties and
values that you use extremely often (and therefore know by heart).

Of course you can also always use the IDE auto-completion support and resources
like the MDN CSS Properties List to learn about all possible properties and values.

The Box Model

When working with CSS it's important to understand that HTML elements have a
so-called "box model".

This means that all HTML elements do have various "layers" that can be styled:

The content
A padding around the content (but inside of the border)
A border
A margin around the entire element

a:hover { /* targets <a> where the user's mouse is hovering over */
 font-weight: bold;
}

https://developer.mozilla.org/en-US/docs/Web/CSS/Reference

You don't need to set any padding, border or margin - you can set only what you
need. But with these different "layers", you can add spacing between a visible
border and the content and / or around an element.

It is worth noting that block and inline elements behave differently though:

Block elements: It behaves as described above
Inline elements: Vertical margin is ignored, vertical padding is added but
does not push other elements or content away

You can also change if an element behaves like a block or inline element via the
display property (e.g. display: block sets the behavior to "block element" even
if it normally is an inline element). There also inline-block as a possible display
value which will basically merge the two behaviors and "unlock" full block behavior
whilst keeping the content inline with other content.

Why Is It Called "Cascading"?

Why is it called "Cascading Style Sheets"?

Because a cascade of style definitions can affect one and the same element - i.e.
multiple CSS rules can affect the same element.

Here's an example:

In this example, the two CSS rules are both affecting the <a> element.

Why would you have two instead of just one rule? Because you maybe have different
links on your page - some with a default-link class, some without it.

<style>
 a {
 text-decoration: none;
 }

 .default-link {
 color: red;
 }
</style>

Some linke

Because multiple CSS rules can affect the same HTML element, you can split your
CSS definitions across multiple rules. This avoid unnecessary copy & pasting and
code duplication!

Specificity

But what happens if different CSS rules target the same CSS property?

Consider this example:

In this case, the link would be red because the order of CSS rules matters - the later
rule (in this case .default-link wins).

But actually, it's a bit more complex than that. It's not just about the order.

Instead, there is a concept called specificity (yes, it's a horrible word!) involved.

The higher the specificity of a rule, the more important it is. And higher specificity
beats lower specificity.

The order of your code influences the specificity but it's not the only factor.

The kind of selector you're using also plays an important role - for example, an id
selector (like #some-id) beats a regular tag type selector (like h1).

And that kind of makes sense: After all, if you target a specific id you have a way
more specific selection criteria than if you just target the tag type.

And whilst I could now write a long list of specificity factors and which rule wins
over which other rule, the comforting thing is that you can basically trust your own
common sense.

<style>
 a {
 color: blue;
 }

 .default-link {
 color: red;
 }
</style>

Some linke

Just as it makes sense that an id is more specific than "just the tag", a combined
selector (e.g. p a { ... }) would win over a "standalone" selector (e.g. a { ...
}).

So the more specific your CSS selectors get, the higher the specificity. And higher
specificity beats lower specificity.

Inheritance

Connected to the "Cascading" and "Specificity" concepts is the concept of
"Inheritance".

HTML elements are not just affected by styles that are defined in rules directly
targeting those elements but instead they can also be styled by rules that target
parent or ancestor elements.

Here's an example:

In this example, both <h1> and <p> would be affected by the font-family and
text-align CSS definitions in the body rule.

Why?

Because of "Inheritance".

They inherit the styles defined in the parent element.

<style>
 body {
 font-family: 'Open Sans', sans-serif;
 text-align: center;
 }

 p {
 margin: 20px;
 }
</style>

<body>
 <h1>I use 'Open Sans' as a font-family!</h1>
 <p>So do I! And we're both aligned to the center.</p>
</body>

Not all CSS properties are inheritable though - but again, you can trust your
common sense.

Text color, most font styles etc. are inherited.

Margins, paddings, borders etc. are not.

Browser Defaults

Browsers also define some default styles for certain elements - for example, they
often make the <h1> element bigger and give it a bold font-weight.

This has a very low specificity though and hence you can easily overwrite these
default styles with any CSS selector.

CSS Properties We Know Thus far

Font-related:

font-family: Set the font family you want to use - can be a single font
or (typically) a list of fonts, where the first font is used and the other
fonts act as fallback fonts if the first font can't be loaded
font-size: Sets the text size - can be set in "device independent" pixels
(e.g. 18px) or other values which we'll discover later
font-weight: Allows you to set the weight of some text (default is
normal, you can choose a numeric weight like 700 or an alternative like
bold instead). Important: Your loaded font needs to support that weight!

Text:

text-align: Controls the alignment of the text (e.g. center, left,
right)
text-decoration: Can be used to add extra decoration (or remove it) like
underlining (e.g. text-decoration: underline)

Colors:

color: Sets the text color

background-color: Sets the background color of an element

Colors can be set with differnt kinds of units:

Hexadecimal number identifiers (e.g. #fa923f, #ccc) where you got
three two-digit pairs that define the r/g/b (red, green, blue) color
parts
The rgb() "function" that allows you to set a r/g/b color with
decimal numbers
The hsl() function which can be used to define a color as a

combination of hue/saturation/lightness
You can use either of these color units - it comes down to your
personal preference; every color can be expressed with each of these
three methods
There also is rgba() and hsla() in case you also want to add an
"alpha channel" (transparency - value between 0 and 1) to your
color

Box Model:

margin: Sets extra spacing around an element - could be set with pixels
(e.g. 18px)

margin is the shorthand notation that sets spacing in all directions,
the long-form would be margin: <top> <right> <bottom>
<left> (e.g. margin: 10px 5px 8px 3px)
You also have margin-left, margin-right, margin-top and
margin-bottom to target specific directions

padding: Adds extra spacing inside of an element - could be set with
pixels (e.g. 18px)

Just like margin, you can use the shorthand notation padding:
<top> <right> <bottom> <left> or target specific directions like
padding-bottom

border: Can be used to define a visible border around the element
content + padding (e.g. border: 1px solid black)

border-radius: Can be used to give a box rounded corners (even if no
border is defined)

Sizes:

width: Used to define a fixed width for an element - instead of using the
full screen width for block elements or the content width for inline
elements (could be set in pixels like 18px)
height: Used to define a fixed height for an element - instead of inferring
it automatically based on the content height in the element

Other:

box-shadow: Can be used to define a shadow for an element - is set by
defining a x-offset, y-offset, an optional blur radius, an optional spread
radius and a color (e.g. box-shadow: 0 1px 8px rgba(0, 0, 0, 0.2))

	HTML & CSS Basics - First Summary
	HTML Summary
	What & Why?
	HTML Element Anatomy
	Nesting HTML Elements
	HTML Structure & Skeleton
	Inline vs Block Elements
	HTML Elements We Know Thus Far

	CSS Summary
	What & Why?
	CSS Syntax
	What Can You Style?
	CSS Values & Units
	The Box Model
	Why Is It Called "Cascading"?
	Specificity
	Inheritance
	Browser Defaults
	CSS Properties We Know Thus far

